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Summary. Epoxide 14 was cyclized with BF3 to the pentacyclic derivative 17, which was further 

elaborated to 2,; stereoisomer of the natural indolosesquiterpene polyveoline. 

Polyveoline 3' (scheme l), a representative of a series of indolosesquiterpenes 
2 

, might 

result in the plant from the linkage of a preformed drimane sesquiterpene with an indoleL, 

or from the polyenic cyclization of an w-epoxido-farnesyl-indole. The second hypothesis brings 

up the question of indole acting as terminator in a polyene cyclization. 

; 

Scheme 1 

A preceding paper3 described the synthesis and attempted cyclization of 3'-w-epoxido- 

farnesyl-indoles. This study refers to the 2'-farnesyl-indole series, with regard to the 

possibly biogenetic sequence 1 + 2 + 3. --- However the in vitro feasability of the sequence was 

evaluated starting with the more easily available E,E-farnesol instead of the Z-E-isomer 

required by the actual ring junctions of polyveoline. 

The farnesyl chain was branched using Sundberg's 2-alkylation of 1-benzenesulfonyl in- 

dole4. E,E-farnesyl bromide thus gave 25 (70%) (scheme 2). The Van Tamelen regiospecific epo- 

xidation 
6 

next needed protecting the labile indole nucleus with an otherwise lipophilic group; 

in a first route, the N-trifluoroacetyl indoline 7 was prepared from 4 through successive 

hydrolysis (IN ethanolic KOH, refl., 14 h.+ 5, 90X), reduction (NaBH3CN/HC104/MeOH, rt, 

20 min. -+ 5, 75%) and acylation (TFAA, rt, 15 min. + 7, 100%). It was then elaborated via 

bromohydrin 8 to epoxide 2 (60% : i) NBS, 1.2 eq/DME/H20 9:1, rt, 2 h. ; ii) K2C03/:leOH, rt, 

1 h.), which was N-deprotected (NaBH4, 1 eq/:leOH, rt, 20 min. + indoline lo, 80%). The final 

step involved reoxidation of the indole nucleus through a Rushig procedure 
3 

: i) NCS, 

1.1 eq/Et3N, 1.1 eq/CH2CL2, -lO"C, 5 min. ; ii) DBU. However C-3' suffered a very easy oxida- 
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tion in this series and the 3'-chloroindole 11 was the only isolated product (30%)7. - 
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This failure prompted to test sulphonamide 4 as a protected indole in the epoxidation 

process. Actually it reacted with NBS to yield the N-protected bromohydrin 12, which then 

gave the required epoxide 13 upon reaction with 1N ethanolic KOH (75'C, 7 h. : 11 + 12, - - 

25%). Alternatively, treatment of the bromohydrin with K2C03/MeOH (rt, 1 h.) yielded the 

N-protected epoxide 14 (95%). - 

Attempts of cyclization of epoxide 13 with BF3 - etherate in CH2C12 led to a complex 

mixture from which only the tricyclic oxide 15 (10%) could be isolated and characterized - 

with confidence8 (scheme 3). 

u R-H ‘I R: S02Ph 

E R: SOzPh 13 R:H 

Scheme 3 

An adverse unfolding of 13 was then suspected to originate from fixation of BF3 on - 

both oxygen and nitrogen atom, which designated the sulphonamide 14 as a more appropriate - 

substrate. Gratifying enough,the sulphonamide group proved to lower the basicity of indole 

to such an extent that it did not prevent it from terminating the polyene cyclization : 

this time again BF3 etherate gave a number of derivatives. Repeated tic allowed isolation 

of the tricyclic oxide 16 (13%) and of a crystalline compound (13%, mp 265"C), which was - 

ascribed the pentacyclic structure 17. - 
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This compound, M+' 477, had no olefinic proton or carbon and no indolic H-3'. Its 

four methyl groupswere borne by quaternary carbons ('H and 
13 
C NMR).'Ihe eight other aliphatic 

carbons-e threetertiarysndfive secondary ones. An equatorial OH group had resulted from the 

cyclization as indicated by a sharp singlet at 1.5 ppm, by a dd at 3.3 ppm (J=10.4 and 

5.8Hz, H-31 andbythesignalof C-3 at 79.0 ppm. Completion of the cyclization by the clo- 

sure of a cyclopentene ring was supported by the base peak M-15 in the MS of 17 (cleavage - 

of the benzylic 8,12-bond) and by homonuclear and heteronuclear NMR correlations : signals 

at 67.0 and 26.4 ppm were unequivocally attributed to C-9 and C-11, respectively, and the 

three protons on these carbons were seen as a 3-spin system at 2.10 (H-9), 2.83 and 

2.99 (H-II) ppm (J=6, 12 and 15Hz). These three protons did not exhibit any other short 

range coupling. 

These results leave little doubt as to the structure of 17. Its configuration rests - 

on its synthesis from E,E-farnesyl indole,on the chemical shifts of the methyl groups 932 , 

10 
and on the coupling constants of H-3 and H-9 . 

Finally, the sulphonamide 17 was N-deprotected to 18(lN KOH/EtOH, 50%) and further - - 

reduced to indoline 19, mp 2lO"C, M+' 339 (NaBH3CN/TFk, 65X), a stereoisomer of polyveoline. 

Reduction of the indole nucleus from the a-face results in a clear anisotropic effect of 

the benzene ring on the C-12 methyl (6=0.65 ppm). 

The N-benzylsulfonyl group thus behaved as a highly efficient assistant in this 

synthesis, as it successively contributed to the 2'-alkylation of indole, to the regio- 

selective epoxidation of the resulting 2'-farnesyl-indole, and to the termination of the 

biomimetic cyclization. 
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